Gases and the Atmosphere

Pressure

- Force per unit area
- Atmospheres (atm), Pascals (Pa), mm of Mercury (mmHg), millibar (mb)
- A manometer is used to measure pressure
- Usually called a barometer when used to measure atmospheric (or barometric) pressure
- A column of mercury (the oldest type of manometer)
- Invented by Evangelista Torricelli in 1643

- U-tube manometer
- Invented by Christian Huygens in 1661

Converting

- 1 atm $=101.3 \mathrm{kPa}$
- $1 \mathrm{~atm}=760 \mathrm{mmHg}$
- $1 \mathrm{kPa}=10 \mathrm{mb}$

Temperature

- Temperature is a measurement of how hot or cold a substance is based on an arbitrary scale
- Fahrenheit, Celsius, Kelvin

Kelvin Temperature Scale

- Based on the theory of absolute zero
- The lowest temperature that can be achieved
- Lord Kelvin reasoned that at this temperature all molecular motion would stop (kinetic energy would be zero
- Symbol, K
- We do not say degrees kelvin, just kelvin
- Conversion from Celcius temperature

$$
K={ }^{\circ} C+273
$$

Gas Laws

Robert Boyle (1600)

- Boyle's Law
- at a constant temperature, the volume of a given mass of gas varies inversely with pressure

$$
\begin{gathered}
P \propto \frac{1}{V} \\
P_{1} V_{1}=P_{2} V_{2}
\end{gathered}
$$

- Graphing Pressure vs Volume ${ }^{-1}$ confirms the inverse relationship between pressure and volume

Example

- If 3 L of gas is initially at a pressure of 1 atm, what would be the new pressure to cause the volume of the gas become 0.5 L ?

$$
\begin{aligned}
P_{1} V_{1} & =P_{2} V_{2} \\
(1 \mathrm{~atm})(3 \mathrm{~L}) & =P_{2}(0.5 \mathrm{~L}) \\
P_{2} & =6 \mathrm{~atm}
\end{aligned}
$$

Jacques Charles (1790)

- Charles' Law
- at a constant pressure, the volume of a given mass of gas is directly proportional to its (absolute) temperature

$$
\begin{gathered}
V \propto T \\
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
\end{gathered}
$$

- If we extend the line to the horizontal axis, we see that it intercepts at $\mathrm{T}=0 \mathrm{~K}$
- The lowest possible temperature is absolute zero
- Charles' Law therefore confirms the idea of absolute zero

- If we use Celsius temperature instead of Kelvin, we can see that the value of absolute zero is $-273{ }^{\circ} \mathrm{C}$

Example

- The temperature of 6.00 L of a gas at $25^{\circ} \mathrm{C}$ is increased to $227^{\circ} \mathrm{C}$. Determine the volume at the new temperature.

$$
\begin{aligned}
& 25.0^{\circ} \mathrm{C}+273=298 \mathrm{~K} 227^{\circ} \mathrm{C}+273=500 \mathrm{~K} \\
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& \frac{(6.00 \mathrm{~L})}{(298 \mathrm{~K})}=\frac{V_{2}}{(500 \mathrm{~K})} \\
& V_{2}=10.1 \mathrm{~L} \\
& \hline
\end{aligned}
$$

Joseph Louis Gay-Lussac

- Gay-Lussac's Law
- At constant volume, the pressure is directly proportional to the kelvin temperature

$$
\begin{gathered}
P \propto T \\
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
\end{gathered}
$$

Example

- A sample of gas is found to have a pressure of 101.3 kPa at 273 K . Calculate the new pressure at 401 K , if the volume is constant.

$$
\begin{aligned}
\frac{P_{1}}{T_{1}} & =\frac{P_{2}}{T_{2}} \\
\frac{(101.3 \mathrm{kPa})}{(273 \mathrm{~K})} & =\frac{P_{2}}{(401 \mathrm{~K})} \\
P_{2} & =149 \mathrm{kPa}
\end{aligned}
$$

Combined Gas Law

- If we combine the observations of Boyle, Charles, and Gay-Lussac, we get a relationship that we call the combined gas law

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Example

- Salvage divers often use lift bags to lift objects to the surface. Divers are required to make a pre-dive calculation of the forces involved, to ensure the safety of the divers during the recovery. A lift bag contains 145 L of air at the bottom of a lake, at a temperature of $5.20^{\circ} \mathrm{C}$ and a pressure of 6 atm . As the bag is released, it ascends to the surface, where the pressure is 1 atm and $16.0^{\circ} \mathrm{C}$. Calculate what volume the gas would occupy at the surface of the lake.

$$
5.20^{\circ} \mathrm{C}+273=278.2 \mathrm{~K} \quad 16.0^{\circ} \mathrm{C}+273=289 \mathrm{~K}
$$

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$\frac{(6.00 \mathrm{~atm})(145 \mathrm{~L})}{(278.2 \mathrm{~K})}=\frac{(1.00 \mathrm{~atm}) V_{2}}{(289 \mathrm{~K})}$

$$
V_{2}=904 \mathrm{~L}
$$

